Glaciers and Sea Level Rise

Using helicopters, icebreakers, fishing vessels, and autonomous surface and underwater vehicles for over a decade, Fiammetta Straneo and her group have been probing the edge of massive calving glaciers in iceberg-choked fjords in Greenland to explore what is the Achille’s heel of glaciers – the marine edge where glaciers meet the sea.

Their goal? Collapsing ice shelves and calving of large icebergs in Greenland and Antarctica have recently become major drivers of sea level rise. The rapidity of these changes has come as a surprise, revealing major gaps in our understanding of how ice sheets respond to a changing climate. To a large extent, these gaps are due to a lack of measurements so Fiammetta and her group have probed in these polar environments to improve models of sea-level rise predictions.

Watch — Navigating the Perilous Waters at the Edge of Glaciers to Understand Sea Level Rise – 2019 Keeling Lecture

Neanderthal Among Us? Science Meets Fiction

What makes us human is a question that not only science asks, but all disciplines of mind from philosophy to religion to sociology and ethics, and even to storytelling and the arts.

Tim Disney’s new movie “William” is about a Neanderthal living in the modern world and forces us to ask about humanness and many other questions.

Disney’s movie provides a foil to explore many facets of human nature and sociology, and raises questions about technology and its present and future effects on the human phenomenon.

With research interests and experience exploring the distinctions in the Neanderthal and Human genomes, Alysson Muotri, Director of the UC San Diego Stem Cell Program, brought together a panel of experts from across a spectrum of disciplines to explore these issues in a lively and engaging forum with the movie’s creator.

Watch — Neanderthal Among Us? Science Meets Fiction – A Discussion of Tim Disney’s Motion Picture “William”

Searching for a Cure for Blindness

There are a number of diseases that can lead to blindness. But, a researcher at UC San Diego thinks there might be one way to cure them all. It’s called endogenous regeneration. Think of a lizard re-growing a lost tail. Zebrafish can do something similar with retinal tissue. Researcher Karl Wahlin says there is evidence humans have the potential to do the same, if scientists can figure out how to activate the process.

Wahlin’s work isn’t limited to teaching the body to repair itself. He’s also using stem cells to study different eye diseases and search for cures. He works with what are known as retinal organoids – miniature retinal models grown in the lab. These can be made from stem cells of people with specific eye diseases so researchers can see how those diseases might develop in the womb, and which treatments might be effective against them.

Now, Wahlin is teaming up with Alysson Muotri from the UC San Diego Stem Cell program who uses brain organoids for similar research. The two have begun working together with the help of a bioengineer who builds 3D-printing machines that can incorporate stem cells. Learn how it all works in the latest piece from the Building the Brain Series.

Watch — Stem Cells and Curing Blindness – Karl Wahlin

Building the Brain With Alysson Muotri

Inside of each brain, there is the possibility to understand how trillions of neural connections come to sense the world, record memories, create an individual, and shape who you are and who you will become. Can we ever learn how this happens?

By using cortical organoids – self organized clusters of neurons generated by stem cells, that is what Alysson Muotri’s lab at the Sanford Consortium for regenerative medicine wants to learn.

Called “brain organoids” because they exhibit many of the characteristics of a developing brain they are asking what happens to build a brain? What happens to create a human mind, and who we are? How does this process become disordered, giving rise to conditions like autism, schizophrenia, epilepsy, and degeneration? And how can they find ways to intervene and rescue the mind from disorders, and even restore lost function?

Muotri’s lab and a host of collaborators in and out of UC San Diego are using a diverse array of methods and tools on these brain organoids, from researching the details of vision to how neurons connect and form networks, to engineering ways to help the organoids become more complex, to the differences between normal brains and brains with cognitive disorders, even to growing brain organoids in space to understand causes of autism and Alzheimer’s disease.

Join Alysson Muotri, Director of the UC San Diego Stem Cell Program as he takes you on a journey to visit the labs and collaborators who are exploring how a brain is built on Building the Brain.

Watch — Building The Brain With Alysson Muotri

Engineering Mosquitos to Fight Malaria

Mosquitos are the deadliest animal on Earth. They spread diseases like yellow fever, chikungunya, West Nile virus and malaria. Malaria alone killed 435,000 people and infected another 219 million in 2017 according to the World Health Organization. There are widespread efforts to combat mosquito-borne illnesses, including revolutionary new gene editing techniques.

Ethan Bier and Valentino Gantz, biologists at UC San Diego, have been researching gene drives – systems that allow scientists to quickly push genes through entire populations. Typically, genetic information from each parent is combined and passed down to their children. Think back to Punnett squares from high school biology. If one parent has blonde hair and the other has brown hair, the brunette would have to carry a recessive blonde gene for any of their children to be blonde. But, gene drives change that. Gantz and Bier came up with a way to use the CRISPR gene-editing technique to insert self-editing genes into mosquitos, so preferred traits are always passed down. Their research shows these traits can take over entire populations within 10 generations, one to two years for mosquitos.

In a recent talk at UC San Diego Extension’s Osher Lifelong Learning Institute, Bier dove into the details of exactly how gene drives work, and their many potential applications.

Watch — Engineering Mosquitos to Fight Malaria with Ethan Bier — Osher UC San Diego