Editing the Code of Life

You may not know what clustered regularly interspersed short palindromic repeats means, but when you see or hear the word CRISPR it all takes on new meaning, thanks to the efforts of UC Berkeley’s Jennifer Doudna and her collaborator Emmanuelle Charpentier, who developed this revolutionary method of genomic editing.

Her work has literally changed the world with her research, with tremendous benefits for the future of humankind and the planet.

The discovery of CRISPR-Cas9 genetic engineering technology has changed human and agricultural genomics research forever. This genome-editing technology enables scientists to change or remove genes quickly and with extreme precision. Labs worldwide have changed the course of their research programs to incorporate this new tool, creating a CRISPR revolution with huge implications across biology and medicine.

This talk marks the occasion of Doudna receiving the UC San Diego Scripps Institution of Oceanography’s 2019 Nierenberg Prize for Science in the Public Interest.

Watch — Editing the Code of Life: Into the Future with CRISPR Technology with Jennifer Doudna – 2019 Nierenberg Prize for Science in the Public Interest

Unlocking the Mysteries of the Brain Through Stem Cell Research

Inside a lab at the Sanford Consortium for Regenerative Medicine, researchers are doing something truly remarkable. They are growing tiny versions of developing human brains in order to study everything from Alzheimer’s disease to the Zika virus. Alysson Muotri is the co-director of the UC San Diego Stem Cell Program and leads the team researching brain organoids. He recently sat down with Dr. David Granet on Health Matters to discuss the endless possibilities of his research.

Muotri’s organoids are often referred to as “mini-brains,” but they are far from what that name might suggest. The organoids are grown from stem cells, which are harvested from living tissue, such as skin cells. Researchers give those stem cells instructions to become neural cells. Eventually they form tiny clusters of neural cells, about the size of a pea. Those clusters have been shown to exhibit some of the same characteristics of developing human brains, including firing electrical signals in specific patterns. But, the organoids do not contain every type of brain tissue, and have no vascularization.

Despite the differences with the human brain, organoids have proven useful in understanding and treating disease. One of the major successes of Muotri’s research was finding and testing an existing drug to treat mothers infected with Zika virus. The drug can prevent the disease from being passed to the baby and causing microcephaly. Muotri is hoping his lab will continue to have success using the organoids as an effective brain model to find more cures, and provide a deeper understanding of brain development and disease. And, his work isn’t limited to Earth. Muotri recently launched his organoids into space for a groundbreaking study.

Watch — Using Stem Cells to Research the Brain – Health Matters

How a Year in Space Affects the Human Body

Science fiction has long promised an age of interplanetary human existence. Scenes of spaceships hopping from one galaxy to the next are so common, it seems almost inevitable that future generations will one day vacation on Mars. But, if we are ever going to achieve life on other planets, we first have to figure out if the human body can tolerate it.

Some of the best data we have on the subject comes from American astronaut Scott Kelly. Kelly spent a year living on the International Space Station while his twin brother Mark, also an astronaut, was on Earth. Scientists from all over the country studied the impact life in space had on Scott Kelly, and compared changes in his body to his brother.

One of those scientists was UC San Diego Professor of Medicine, Michael G. Ziegler, MD. In a recent talk at UC San Diego Extension’s Osher Lifelong Learning Institute, Ziegler detailed some of the more interesting findings from the study. Scott Kelly lost weight. There were significant changes to his gene expression. He lost collagen. His carotid artery thickened. His bones became less dense. His eye shape changed, forcing him to wear glasses. While he was in space, his performance on cognitive tests improved. But, his performance plummeted after returning to Earth, and never quite returned to pre-launch levels.

Despite all of this, Ziegler has reason to be hopeful about long-term space travel. He says the year in space study illuminated many of the challenges, and gave researchers some ideas of how to overcome them. Still, it’s probably a little early to start planning your trip to the red planet.

Watch — How a Year in Space Affects the Human Body with Dr. Michael G. Ziegler — Osher UC San Diego

All About the Brain

Explore the immensity of the human brain, its billions of neurons and trillions of connections, and the research that is helping us understand more about this complex and amazing organ.

Lawrence Livermore National Laboratory’s popular lecture series returns with four new episodes each relating to the brain. The lectures are aimed at a middle and high school level and presented by LLNL scientists in collaboration with high school science teachers. This is a great opportunity to get a look at the cutting-edge science in a friendly and understandable way. Explore the immensity of the human brain, its billions of neurons and trillions of connections, and the research that is helping understand more about this amazing organ.

Browse more programs in Field Trip at the Lab: Science on Saturday.

Engineering Mosquitos to Fight Malaria

Mosquitos are the deadliest animal on Earth. They spread diseases like yellow fever, chikungunya, West Nile virus and malaria. Malaria alone killed 435,000 people and infected another 219 million in 2017 according to the World Health Organization. There are widespread efforts to combat mosquito-borne illnesses, including revolutionary new gene editing techniques.

Ethan Bier and Valentino Gantz, biologists at UC San Diego, have been researching gene drives – systems that allow scientists to quickly push genes through entire populations. Typically, genetic information from each parent is combined and passed down to their children. Think back to Punnett squares from high school biology. If one parent has blonde hair and the other has brown hair, the brunette would have to carry a recessive blonde gene for any of their children to be blonde. But, gene drives change that. Gantz and Bier came up with a way to use the CRISPR gene-editing technique to insert self-editing genes into mosquitos, so preferred traits are always passed down. Their research shows these traits can take over entire populations within 10 generations, one to two years for mosquitos.

In a recent talk at UC San Diego Extension’s Osher Lifelong Learning Institute, Bier dove into the details of exactly how gene drives work, and their many potential applications.

Watch — Engineering Mosquitos to Fight Malaria with Ethan Bier — Osher UC San Diego